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Abstract Scalar-valued functions are ubiquitous in scientific research. Analysis
and visualization of scalar functions defined on low-dimensional and simple do-
mains is a well-understood problem, but complications arise when the domain is
high-dimensional or topologically complex. Topological analysis and Morse theory
provide tools that are effective in distilling useful information from such difficult
scalar functions. A recently proposed topological method for understanding high-
dimensional scalar functions approximates the Morse-Smale complex of a scalar
function using a fast and efficient clustering technique. The resulting clusters (the
so-called Morse crystals) are each approximately monotone and are amenable to ge-
ometric summarization and dimensionality reduction. However, some Morse crys-
tals may contain loops. This shortcoming can affect the quality of the analysis per-
formed on each crystal, as regions of the domain with potentially disparate geom-
etry are assigned to the same cluster. We propose to use the Reeb graph of each
Morse crystal to detect and resolve certain classes of problematic clustering. This
provides a simple and efficient enhancement to the previous Morse crystals cluster-
ing. We provide preliminary experimental results to demonstrate that our improved
topology-sensitive clustering algorithm yields a more accurate and reliable descrip-
tion of the topology of the underlying scalar function.
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1 Introduction

Scalar-valued functions are abundant in scientific data. Understanding and visual-
izing the structure of these functions is a fundamentally important aspect of sci-
entific research. When the domain of a scalar-valued function is low-dimensional,
these two tasks are often straightforward. However, as the topological and geomet-
ric complexity of the domain increases, exploring and understanding the function
can become challenging. Recently, feature-based methods using ideas from geome-
try and topology have proven useful for extracting meaning from high-dimensional
data.

Computational efficiency is very important for data exploration, yet it can be
an elusive goal when the data is high-dimensional. For example, creating a pre-
cise reconstruction of a high-dimensional domain from point cloud data and detect-
ing high-dimensional cycles can be computationally prohibitive. Thus, a reasonable
compromise is to strive for a balance between fidelity and processing speed. The
fundamental idea of topology-sensitive clustering is to partition the domain into re-
gions that are in some sense simple, capturing the essence of the topological struc-
ture of the scalar function at hand while maintaining economy of computing effort.

One may argue that a good clustering algorithm will partition the domain into
monotone regions which are approximately topological balls, as this would pro-
vide simplicity of both the function behavior and topological structure within each
region. Additionally, the accuracy of approximation should be exchanged for a sig-
nificant gain in computational efficiency.

In this work, we take an additional step toward this ideal topology-sensitive clus-
tering algorithm by extending the method of Gerber et al. [16]. Specifically, [16]
describes a simple discrete gradient based method to cluster points into so-called
Morse crystals approximately analogous to the Morse-Smale complex of the input
function. These crystals have simple topology (ideally a topological ball) within
each of them, and have been demonstrated to be useful in understanding high di-
mensional scalar fields in various ways. However, in practice, these Morse crys-
tals may have non-trivial topology inside. In this work, we take advantage of the
ability to detect a certain type of non-trivial topology within each crystal, namely
one-dimensional cycles (loops) reflected in the structure of its Reeb graph. By this
property, the Reeb graph is used to subdivide a crystal into pieces which are topo-
logically simpler. We also show preliminary experimental results to demonstrate the
effectiveness of the proposed methods in several datasets.

2 Related Work

Topological methods such as the Reeb graph [29] and Morse-Smale complex [25],
provide abstract representations of the fundamental structure of scalar functions.
Topological structures make complex functions accessible to computational analy-
sis and provide efficient means for defining a wide variety of features. Scalar-field
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topology as a general tool for analysis of scalar functions has been used in a wide
array of applications ranging from, for example, physics [5, 23], biosciences [20],
and medicine [7] to material sciences [17].

The Morse-Smale complex is defined as the intersection of the stable and un-
stable manifolds of f , i.e., the Morse-complex of f and − f . The Morse-Smale
complex partitions the domain into regions of monotone gradient flows, each with
a single source, defined by a maximum of f , and a sink, defined by a minimum
of f . In the area of visualization, computation of Morse-Smale complexes has fo-
cused mainly on n-dimensional manifolds [13, 14, 18]. Algorithms for computing
the Morse complex — although under different names — have been proposed in a
wide range of research areas. In computational geometry, the Morse complex is of-
ten described in terms of a filtration of sub-level sets of f [9, 8, 35]. The watershed
segmentation method [4, 27], widely used in image processing, is a variant of the
Morse-complex and has been described for image data [3] as well as abstract-graphs
and n-dimensional grids [34]. Gradient ascent-based clustering methods, such as
mean-shift [10, 12], medoid-shift [30], and quick shift [32] clustering, are widely
used in machine learning and pattern recognition, and they are also closely related to
algorithms for computing and approximating the Morse complex. Our work is based
on and extends a recently proposed algorithm by Gerber et al. [16] for approximat-
ing the Morse-Smale complex of unstructured, point-cloud data in n-dimensions,
described in more detail in Section 3.2.

While the Morse-Smale complex describes the topology of a scalar function f
based on the induced gradient flow, the Reeb graph [29] encodes the topology of the
set of level-sets of f . The Reeb graph is constructed by contracting the connected
components of the level-sets of f to points. In this work we use the Reeb graph
to detect and correct loops in crystals of the approximate Morse-Smale complex. In
literature, various efficient algorithm for computing the Reeb graph and its loop-free
variant, the contour-tree, have been described for n-dimensional manifolds [28, 6,
21]. Here, we use the fast randomized algorithm proposed by Harvey et al. [21] to
compute the augmented Reeb graph of a point set.

In order to compute the Morse-Smale complex, information about the connec-
tivity of the domain is needed. Neighborhood/proximity graphs [22] such as the k-
nearest neighbor graph and Delaunay triangulation [2] are commonly used to define
neighborhoods for point cloud data. We use the approximate, undirected k-nearest
neighbor graph for this purpose. We then construct the 2-skeleton of the domain,
required for the Reeb graph computation, by calculating the Rips complex [33] (see
Section 3.3.1).

3 Method

Overview. We consider the problem of understanding the structure of a scalar func-
tion defined on a high-dimensional domain f : M→R, where M⊆RD. In practice,
information about the scalar function is often available only as point cloud data; i.e.,
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a set X = {x1,x2, ...,xn} of n discrete point samples taken from the domain, and their
associated set of function values Y = { f (x1), f (x2), ..., f (xn)}. Thus, the objective
is to acquire some insight into the structure of f based on properties which can be
obtained through the analysis of X and Y. Our algorithm proceeds as follows:

1. Domain Approximation. The connectivity of the underlying domain, if not
available, must be approximated from X . We use the approximate, undirected
k-nearest neighbor graph for this purpose.

2. Morse Crystal Decomposition. X is partitioned into Morse crystals using the
method proposed in [16].

3. Reeb Graph Shattering. Crystals containing loops are shattered according to
the structure of their Reeb graphs.

3.1 Domain Approximation

Before any topological processing can occur, the structure of the domain must be
approximated from X . The proposed method is agnostic with respect to how the
approximation is performed; any suitable method which attempts to capture the
neighborhood relationships of the point cloud data can be used. For the purposes
of applying the technique to analysis of high-dimensional datasets while maintain-
ing computational efficiency, we prefer to use the approximate, undirected k-nearest
neighbor graph of X to represent the topology of the underlying domain. We com-
pute this graph efficiently using the freely-available ANN library [26].

3.2 Morse Crystal Decomposition

In this section we review the Morse crystal decomposition of f , introduced briefly
in [16]. We provide a detailed description of this decomposition and later show in
Section 3.3.2 how it is augmented to yield the shattered Morse crystals.

We begin by considering the k-nearest neighbors of a point, and we describe how
the function values of those neighbors give rise to the Morse crystal decomposition.
Without loss of generality, henceforth we assume that all points in X have unique
function values. Let x be a point of X , and let Gknn = (X ,Eknn) be the undirected k-
nearest neighbor graph of X , where Eknn ⊂ X2. Let n(x) = {y : (x,y)∈ Eknn}) denote
the k-nearest neighbors of x. For any neighbor y of x,

m(x,y) =
f (y)− f (x)
‖y− x‖

describes the approximate gradient of f at x in the direction (y− x). Let n+(x) =
{y ∈ n(x) : f (x) < f (y)} denote the upper neighbors of x and n−(x) = {y ∈ n(x) :
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f (x)> f (y)} denote the lower neighbors of x. Then the steepest ascending neighbor
x+ and steepest descending neighbor x− of x are defined as

x+ = argmax
y∈(n+(x)∪{x})

m(x,y); x− = argmin
y∈(n−(x)∪{x})

m(x,y).

The notions of steepest ascending and descending neighbors of a point lead to
succinct definitions of the steepest ascending path of x as π+(x) = {x}∪ π+(x+)
and the steepest descending path of x as π−(x) = {x}∪π−(x−). Finally, let π(x) =
π+(x)∪π−(x) denote the points along the discrete integral curve passing through x.

Since the Morse crystal decomposition relies on the extremal elements of π(x)
for each point x ∈ X , we will use them to define an equivalence class that gives
rise to the decomposition. Let ω+(x) and ω−(x) denote the maximal and minimal
elements of π(x), respectively. Two points x and y are equivalent, denoted x ∼ y, if
their steepest ascending paths converge to a common maximum and their steepest
descending paths converge to a common minimum; that is ω+(x) = ω+(y) and
ω−(x) =ω−(y). Then the quotient space X∼ forms the Morse crystal decomposition
of f .

Based on these observations, it is apparent that computing X∼ admits an efficient
and straightforward solution. Let F+ and F− be two disjoint-set forests [31], where
F+ supports union+(x,y) and f ind+(x) operations, and F− supports union−(x,y)
and f ind−(x) operations. For each point x, take union+(x,x+) and union−(x,x−).
Then the Morse crystal membership of x is uniquely identified as the ordered pair
( f ind−(x), f ind+(x)). Figure 1 illustrates the Morse crystal decomposition of point
cloud data sampled from a simple two-dimensional domain.

Topological Simplification. To help reduce the number of spurious Morse crys-
tals caused by sparsity in the input data or the presence of noise, the Morse crystal
decomposition can be simplified by neutralizing crystals whose topological persis-
tence is below a user-specified threshold τ . Specifically, we can use the union-find

(a) (b) (c) (d)

Fig. 1 An example of the Morse crystal decomposition of a simple scalar function. Here, the func-
tion value at each point is its height. (a) k-nearest neighbor graph of points sampled from a simply
connected, lambda-shaped domain. (b) Edges connecting points to their steepest ascending neigh-
bors. (c) Edges connecting points to their steepest descending neighbors. (d) The Morse crystal
decomposition partitions the domain into four approximately-monotone regions.
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data structure to also compute the standard persistence for each minimum and max-
imum [15]. The output is a set S = {(xi,ki,si,δi)} ⊂ X3×R+ which encodes the
persistence and pedigree of the topological components of f . Here, xi is an ex-
tremum of a topological component with persistence δi, ki is the extremum of the
component which kills xi, and si is the saddle point merging the two components.
By using the map

κτ(xi) =

{
ki if δi < τ

xi otherwise

topological simplification of the Morse crystal decomposition occurs by simply us-
ing (κτ( f ind−(x)),κτ( f ind+(x))) to assign points to Morse crystals.

3.3 Reeb Graph Shattering

While the Morse crystal decomposition provides a useful segmentation of the do-
main into approximately piecewise-monotone regions, its computational efficiency
trades off fidelity to the true underlying Morse-Smale complex. As a result, a crystal
may contain nontrivial loops or higher-order voids. These voids contribute to the ge-
ometric disparity of the points within the crystal, which is antithetical to our desired
domain segmentation.

We propose to focus on the problem of finding and eliminating certain 1-loops in
Morse crystals through the process of Reeb graph shattering. That is, we can further
refine each Morse crystal by tracking the sequence of Reeb graph edges that these
paths visit as they traverse the crystal, and using these sequences to potentially split
the crystal into shattered Morse crystals. Figure 2 illustrates the process of shat-
tering a loop-containing Morse crystal into a small collection of shattered Morse
crystals. We remark that we choose to use the Reeb graph to again trade off fidelity
with efficiency — Computing the Reeb graph of a crystal takes near-linear time
whereas computing a set of generating 1-cycles of an input crystal takes time cubic
in the size of the crystal. (Note that both methods require a 2-skeleton of the crystal
as input; in extreme cases this takes time cubic in the size of the crystal to com-
pute.) Furthermore, as we will show below, the use of the Reeb graph also provides
a natural and simple way to further segment the input crystal; while in general, sub-
dividing a domain to remove all non-trivial 1-cycles does not appear to be an easy
problem.

3.3.1 The Reeb Graph

Let f : X → R be a continuous function. A level set of f with value α ∈ R is the
set f−1(α) = {x ∈ X : f (x) = α}. Two points x,y ∈ X are equivalent with respect
to relation R, denoted xRy, if x and y reside in the same connected component of
some level set. The Reeb graph of f [29], denoted R f (X), is the quotient space XR.
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Intuitively, the Reeb graph captures the merging and splitting behavior of the level
sets of f . R f (X) has a graph structure, and its nodes refers to those points such that
either their up-degree or their down-degree is not 1 (where “up” and “down” refer to
order in function values). An arc of the Reeb graph is a maximal connected compo-
nent after removing nodes from R f (X). See Figure 2(b) for an example, where the
Reeb graph of the height function defined on a torus has four nodes and four arcs.

The Reeb graph depends only on the 2-skeleton of its domain. Thus, we must ex-
tract this information for each crystal. The Rips complex provides a 2-skeleton that
is sufficient for extracting topological information. It is readily computed from Gknn
by removing edges whose endpoints lie in disparate crystals, and then transforming
each 3-clique among the remaining edges into a 2-simplex. The fast randomized al-
gorithm of Harvey et al. [21] is then used to produce the Reeb graph of each crystal.

(a) (b) (c) (d)

Fig. 2 (a) Example of a Morse crystal which contains a large loop. For this example, the height
function is used. (b) The Reeb graph of this crystal. (c) Regions of the crystal corresponding to
the four edges of its Reeb graph. (d) The crystal is partitioned into two shattered Morse crystals
according to which regions of (c) each integral curve passes through. Here, the integral curves of
the left shattered crystal pass through regions {R1,R2,R4}, and integral curves of the right shattered
crystal pass through regions {R1,R3,R4}.

3.3.2 Shattered Morse Crystal Decomposition

Let GC = (VC,EC) denote the k-nearest neighbor graph of X constrained to a Morse
crystal C ⊆ X output by [16]. Let R(C) = (VR,ER) be the Reeb graph of C. Let g
map each edge of GC to its set of corresponding Reeb graph edges. Given a discrete
integral curve π , g(π) denotes its image (which is also a path) in the Reeb graph
R(C). Two points x,y ∈ X are shattered Morse crystal equivalent, denoted x∼̂y, if
g[π(x)] = g[π(y)]. That is, two points are equivalent if they are in the same original
crystal output by [16], and the discrete integral curves passing through them map to
the same set of Reeb graph edges. The resulting quotient space X∼̂ is the shattered
Morse crystal decomposition of f.

Topological Simplification In practice, R(C) may contain a variety of low-
persistence topological features (topological noise) that can result in an oversegmen-
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tation of the crystal. Fortunately, features arising from spurious bumps and small
loops can be eliminated with the help of the extended persistence algorithm [1, 11]
Specifically, the lowest and highest points of each loop in R(C) are paired using the
algorithm, and if their difference in function value is below a user-specified thresh-
old υ , the loop can be removed from R(C).

Recall that the input crystal C itself may be obtained after some topological sim-
plification as described in Section 3.2. Hence it may contain multiple extreme points
inside, and an integral path π in C may end up at some local min and max, instead of
the global min and max. Now after R(C) is topologically simplified into R ′, it may
have fewer extrema than the input crystal C. This means that the image of an integral
path π in R ′ may start and/or end with some interior points, instead of with extreme
points in R ′. This causes some techinical problem when comparing whether two
integral paths are equivalent or not in the simplified Reeb graph. To reconcile this
disparity, the notion of steepest ascending (x+) and descending (x−) neighbors of a
point x ∈C is modified to take into account the structure of R ′. Specifically, if x is
a local maximum in C but not in R ′, then its steepest ascending neighbor is defined
to be its upper neighbor in the simplified Reeb graph R ′. An analogous redefinition
is used for the steepest descending neighbors of local minima.

Computation Given a Morse crystal C output from [16], we first compute its Reeb
graph R(C) using the algorithm from [20], and simplify it to R ′. Next, for two
points x,y ∈ C, to test for their membership, we need to first compute their corre-
sponding integral paths in C, and then check for their images.

To compute their corresponding integral paths π(x) and π(y), we use the same
method as described in Section 3.2 but from the modified forests T+ = (C,E+) and
T− = (C,E−) with E+ = {(x+,x) : x+ 6= x} and E− = {(x−,x) : x− 6= x}. These
forests encode the steepest ascending and descending paths of a point in C based on
the modified definitions of steepest neighbors as introduced above. Next, we need to
compute the images g[π(x)] and g[π(y)]. For simplicity, in our current implementa-
tion, we compute g[π(x)] as the sequence of Reeb graph arcs stabbed by the images
of vertices from π(x) (instead of as the concatenation of the images of edges from
π(x)) 1. Two points x and y are equivalent if their integral paths produce the same
sequence of Reeb graph arcs in R ′.

4 Results

We begin by investigating a pair of synthetic low-dimensional point cloud datasets.
The underlying scalar functions of these datasets are precisely known and they ex-
hibit simple structure, yet their Morse crystal decompositions contain crystals with
loops. We show that the shattered Morse crystal decompositions of these datasets

1 We remark that such sequences produce the same equivalence relations as the one defined earlier
when the input points are dense enough so that there is no long edge whose image spans several
Reeb graph arcs.
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successfully resolve the loops. To conclude, we examine a real dataset consisting
of points sampled from a scalar function whose domain is a 5-manifold embedded
in R9. Our method successfully identifies and corrects problematic crystals in this
dataset.

(a) (b)

Fig. 3 Simple example of the shattered Morse crystal decomposition of a domain containing a
loop. (a) The Morse crystal decomposition of this dataset results in a single crystal containing a
large loop. (b) The large crystal is shattered into two parts to eliminate the loop.

4.1 Torus

As a simple example, we illustrate a dataset consisting of 1000 points sampled ran-
domly from a 2-torus of unit diameter, with the scalar value at each point assigned
according to the height function (see Figure 3). To approximate the underlying do-
main, k = 20 is used, and a threshold of τ = 0.1 is used for topological simplifica-
tion. The (trivial) Morse crystal decomposition is shown in Figure 3(a), i.e., the en-
tire domain is assigned to a single Morse crystal containing a large loop. Figure 3(b)
shows the shattered Morse crystal decomposition, which partitions the domain into
two regions, neither of which contains the loop of the torus.

4.2 Mixture of Gaussians

The torus example of Section 4.1 exhibits a loop that is attributable to the topology
of the domain. However, the algorithm in [16] can produce crystals containing loops
even for scalar functions defined on simply connected domains. To demonstrate this
phenomenon, we construct a simple example by taking a mixture of five 2D Gaus-
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(a)

(b) (c)

Fig. 4 Example of loops arising in Morse crystals even when the domain is simply connected. (a)
Mixture of five Gaussians. Some discrete integral curves are shown in red. (b) The Morse crystal
decomposition results in eight crystals, half of which contain loops. (c) The shattered Morse crystal
decomposition successfully resolves the four loop-harboring crystals.
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sians (see Figure 4). This function contains a total of eight crystals, half of which
contain large loops. The shattered Morse crystal decomposition correctly shatters
the crystals with loops, yielding a final segmentation of the domain into twelve re-
gions. Naturally, the Morse crystals which do not contain loops remain intact during
the shattering process.

(a) (b) (c)

Fig. 5 Optimization dataset visualized by projecting the 9-dimensional points onto their first two
principal components. (a) The Morse crystal decomposition consisting of six crystals. (b) A Morse
crystal whose Reeb graph contains two prominent loops is partitioned into a small collection of
shattered Morse crystals (c).

4.3 Optimization Dataset

In this experiment we demonstrate the applicability of our algorithm to the analysis
of the structure of an optimization problem. Given two images with image point cor-
respondences, the goal is to estimate the translation and rotation of two calibrated
cameras. This problem can be formulated as a minimization of the algebraic er-
ror [19] which — given two corresponding points x = [x1 x2 1]T and x′ = [x′1 x′2 1]T

on the image plane in the respective coordinate frames of the two cameras — can
be defined as:

xT Ex′ = 0. (1)

E = [t]×R is a 3×3 rank-2 matrix, called the essential matrix, with the unit vector
t describing the relative position, or translation, between the two cameras, and the
orthogonal rotation matrix R representing the relative camera orientation. Both t and
R are expressed in the coordinate frame of x. In practice, Eq. 1 can usually not be
satisfied exactly due to the presence of noise in x and x′. The problem is, therefore,
formulated as an optimization of the sum of squared residuals

f (R, t) = f (E) = ∑
i
(xT

i Ex′i)
2 (2)
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over all point pairs < xi,x′i >. In order to minimize f , one needs to determine the 9
elements of E. For more detailed information on the formulation of this problem and
how it is solved in practice see the manuscript by Lindstrom and Duchaineau [24].

In order to understand the structure of f we computed 5000 random samples
of f in 9-dimensional parameter space. Due to the formulation of the problem we
know that E only has 5 degrees of freedom [24], 3 to describe the rotation and 2
to determine the translation up to scale. f , hence, defines a 5-dimensional manifold
embedded in 9-dimensional space.

Figure 5 shows the Morse crystal decomposition of the 5000 point samples us-
ing 17 nearest neighbors. For these images, the 9-dimensional points have been
projected onto their first two principal components. Figure 5(b) reveals a Morse
crystal in this dataset whose Reeb graph contains two prominent loops (a topolog-
ical double-torus). By applying the proposed Reeb graph shattering technique, the
crystal is split into subregions.

4.4 Time Complexity

Since the shattered Morse crystal decomposition requires the 2-skeletons of the
Morse crystals, it can become expensive to compute if k is chosen to be large (re-
quiring, in the worst case, time cubic in the number of vertices). However, choosing
a large k is not necessary in practice since Gknn is only meant to capture the topol-
ogy locally around each point. In our experience, combining a reasonably small k
(e.g. 10 < k < 40) with topological simplification techniques works well for captur-
ing the important topological features of the dataset at hand while minimizing the
prohibitive time complexity of 2-skeleton construction.

5 Conclusions

Reliable estimation of topological structures of high-dimensional functions is essen-
tial for accurate topology-based visualization and analysis. Feature-based visualiza-
tions and statistical analyses of high-dimensional functions based on the analysis of
Morse crystals commonly rely on the notion that a Morse crystal is monotone and
has genus 0. Morse crystals with a common source (maximum) and sink (minimum),
however, are not separated correctly by the approximate Morse-Smale complex al-
gorithm, which can lead to the creation of Morse crystals with a genus ≥ 1.

We described a simple and novel algorithm to augment the previous Morse crys-
tal decomposition algorithm to detect and correct certain falsely merged Morse crys-
tals containing possibly multiple loops. Using the per-crystal Reeb graph we detect
crystals containing loops and shatter them into multiple, loop-free crystals.

We illustrated the problem of crystals containing loops using two analytic ex-
amples and showed that our algorithm produces a correct complex in both cases.
We used our algorithm to analyze the structure of a real-world optimization prob-
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lem, demonstrating its practical relevance. Our algorithm produces a more accurate
approximation of the Morse-Smale complex in high-dimensions.

While the proposed algorithm is an improvement, it is still lacking in some areas.
Specifically, it is only capable of detecting and resolving those loops which are
evident from the structure of the Reeb graph. Thus, it may fail to detect some loops
in the domain which do not induce loops in the Reeb graph. Additionally, like its
predecessor, it is incapable of dealing with any cycles of dimension 2 or greater that
may be present in the dataset. Additional research in topology-sensitive clustering
methods will strive to provide insight into how to grapple with these difficulties.

Computation of topological structures of point-cloud data rely on proper estima-
tion of the structure of the domain. The study and development of methods for con-
structing optimal neighborhood/proximity graphs, hence, promises to enable more
accurate approximations of topological structures. In future we also plan to inves-
tigate further applications of the approximate Morse-Smale complex to improve
understanding of the structure of high-dimensional scalar functions.
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14 W. Harvey, O. Rübel, V. Pascucci, P.-T. Bremer, and Y. Wang

11. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using poincaré and lef-
schetz duality. Foundations of Computational Mathematics 9(1), 133–134 (2009)

12. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE
TPAMI 24, 603–619 (2002)

13. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise
linear 3-manifolds. In: Proc. 19th Symp. on Computational Geometry, pp. 361–370 (2003)

14. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piece-
wise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)

15. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification.
Discrete Comput. Geom. 28, 511–533 (2002)

16. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional
scalar functions. IEEE Trans. Visualization and Computer Graphics 16(6), 1271–1280 (2010)

17. Gyulassy, A., Duchaineau, M., Natarajan, V., Pascucci, V., E.Bringa, Higginbotham, A.,
Hamann, B.: Topologically clean distance fields. IEEE Trans. Visualization and Computer
Graphics 13(6), 1432–1439 (2007)

18. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse-Smale
complexes for three-dimensional scalar functions. IEEE Trans. Visualization and Computer
Graphics 13(6), 1440–1447 (2007)

19. Hartley, R., Zisserman, A.: Multiple View Geometry, second edn. Cambridge University Press
(2003)

20. Harvey, W., Wang, Y.: Generating and exploring a collection of topological landscapes for
visualization of scalar-valued functions. Computer Graphics Forum 29(3), 9931002 (2010)

21. Harvey, W., Wang, Y., Wenger, R.: A randomized O(m log m) time algorithm for computing
reeb graphs of arbitrary simplicial complexes. In: Proc. Annual Symp. on Computational
Geometry 2010, SoCG ’10, pp. 267–276. ACM, New York, NY, USA (2010)

22. Jaromczyk, J.W., Abstract, G.T.T.: Relative neighborhood graphs and their relatives. Proc.
IEEE 80(9), 1502–1517 (1992)

23. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure
of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Visualization and
Computer Graphics 12(5), 1052–1060 (2006)

24. Lindstrom, P., Duchaineau, M.: Factoring algebraic error for relative pose estimation. Tech.
Rep. LLNL-TR-411194, Lawrence Livermore National Laboratory (2009)

25. Morse, M.: Relations between the critical points of a real functions of n independent variables.
Trans. of the American Mathematical Society 27, 345–396 (1925)

26. Mount, D., Arya, S.: ANN: Approximate Nearest Neighbors. URL http://www.cs.umd.
edu/˜mount/ANN

27. Najman, L., Schmitta, M.: Watershed of a continuous function. Signal Processing, Mathemat-
ical Morphology and its Applications to Signal Processing 38(1), 99–112 (1994)

28. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of reeb
graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007)

29. Reeb, G.: Sur les points singuliers d’une forme de pfaff completement intergrable ou d’une
fonction numerique [on the singular points of a complete integral pfaff form or of a numerical
function]. Comptes Rendus Acad.Science Paris 222, 847–849 (1946)

30. Sheikh, Y., Kahn, E., Kanade, T.: Mode-seeking by medoidshifts. In: Proc. IEEE Int. Confer-
ence on Computer Vision (2006)

31. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM 31, 245–
281 (1984)

32. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Proc. European
Conference on Computer Vision (2008)
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